چطور این مقاله مهندسی کامپیوتر و IT را دانلود کنم؟
فایل انگلیسی این مقاله با شناسه 2007352 رایگان است. ترجمه چکیده این مقاله مهندسی کامپیوتر و IT در همین صفحه قابل مشاهده است. شما می توانید پس از بررسی این دو مورد نسبت به خرید و دانلود مقاله ترجمه شده اقدام نمایید
حجم فایل فارسی :
2 مگا بایت
نوع فایل های ضمیمه :
Pdf+Word
کلمه عبور همه فایلها :
www.daneshgahi.com
عنوان فارسي
یـک روش حــاشیـه نویسـی تطبیقـی برای مـوجـودیت هـای زیست پزشکـی و تشخیـص رابطـه
عنوان انگليسي
An adaptive annotation approach for biomedical entity and relation recognition
این مقاله چند صفحه است؟
این مقاله ترجمه شده مهندسی کامپیوتر و IT شامل 12 صفحه انگلیسی به صورت پی دی اف و 26 صفحه متن فارسی به صورت ورد تایپ شده است
چکیده
در این مقاله، ما تأثیر یادگیری تعاملی ماشین را نشان می دهیم: ما یک مجموعه داده تشخیص موجودیت زیست پزشکی را با استفاده از روش "انسان در حلقه" توسعه می دهیم. در تقابل با یادگیری ماشینی کلاسیک، روش های انسان در حلقه بر روی مجموعه های تست یا آموزش از پیش تعریف شده عمل نمی کنند، بلکه فرض می شود که ورودی انسانی با توجه به پیشرفت سیستم بصورت تکرارشونده عرضه می شود. در اینجا حین حاشیه نویسی، یک مدل یادگیری ماشینی بر روی حاشیه نویسی قبلی ایجاد شده و جهت ارائه برچسب ها برای حاشیه نویسی بعدی استفاده می شود. به منظور نمایش اینکه چنین حاشیه نویسی تعاملی و تکرارشونده ای سرعت و کیفیت حاشیه نویسی مجموعه داده را افزایش می دهد، سه آزمایش انجام دادیم. در آزمایش اول، شبیه سازی تجربی حاشیه نویسی تکرارشونده را انجام داده و نشان دادیم که تنها تعداد انگشت شماری از چکیده های پزشکی جهت ایجاد پیشنهاداتی که سرعت حاشیه نویسی را بالا می برد، نیاز به حاشیه نویسی دارند. در آزمایش دوم، پزشکان بالینی یک مطالعه موردی در حاشیه نویسی اسناد بیماری مرتبط با پژوهش خود انجام دادند. آزمایش سوم، حاشیه نویسی روابط معنایی با یادگیری نمونه رابطه در سراسر اسناد را مورد بررسی قرار داد. این آزمایشات به مدل ما به لحاظ کیفی و کمّی اعتبار بخشید، و منجر به یک فناوری استخراج اطلاعات پاسخگو و شخصی تر شد.
1-مقدمه
حوزه زیست پزشکی بطور فزاینده ای به دانشی با داده های فشرده بدل می شود و یکی از چالش ها در ارتباط با حجم روزافزون متون و مقالات پزشکی نه تنها در استخراج اطلاعات بامعنی از این داده ها، بلکه در دستیابی به شناخت، بینش و درک این داده هاست...
حاشیه نویسی تعاملی یادگیری ماشین کشف دانش داده کاوی انسان در حلقه تشخیص موجودیت زیست پزشکی
:کلمات کلیدی
Abstract
In this article, we demonstrate the impact of interactive machine learning: we develop biomedical entity recognition dataset using a human-into-the-loop approach. In contrary to classical machine learning, human-in-the-loop approaches do not operate on predefined training or test sets, but assume that human input regarding system improvement is supplied iteratively. Here, during annotation, a machine learning model is built on previous annotations and used to propose labels for subsequent annotation. To demonstrate that such interactive and iterative annotation speeds up the development of quality dataset annotation, we conduct three experiments. In the first experiment, we carry out an iterative annotation experimental simulation and show that only a handful of medical abstracts need to be annotated to produce suggestions that increase annotation speed. In the second experiment, clinical doctors have conducted a case study in annotating medical terms documents relevant for their research. The third experiment explores the annotation of semantic relations with relation instance learning across documents. The experiments validate our method qualitatively and quantitatively, and give rise to a more personalized, responsive information extraction technology
Keywords:
Interactive annotation Machine learning Knowledge discovery Data mining Human in the loop
سایر منابع مهندسی کامپیوتر و IT-نرم افزار در زمینه داده کاوی در پزشکی