دانلود Assessing Credit Risk: an Application of Data Mining in a Rural Bank

ترجمه Assessing Credit Risk: an Application of Data Mining in a Rural Bank
قیمت : 230,000 ریال
شناسه محصول : 2008390
نویسنده/ناشر/نام مجله : Procedia Economics and Finance
سال انتشار: 2012
تعداد صفحات انگليسي : 7
نوع فایل های ضمیمه : Pdf+Word
حجم فایل : 308 Kb
کلمه عبور همه فایلها : www.daneshgahi.com
عنوان انگليسي : Assessing Credit Risk: an Application of Data Mining in a Rural Bank

چکیده

Abstract

Credit risk assessment for secured loans is an  important operation in banking systems to ensure the lenders pay the loans on schedule and to classify the bank as a well performing bank due to regulation. This paper aims to identify factors which are necessary for a rural bank (Bank Perkreditan Rakyat) to assess credit application. By aiming on the reduction of number of non-performing loans, current decision criteria on credit risk assessment are evaluated. Subsequently, a decision tree model is proposed by applying data mining methodology. The credit risk assessment model is applied to PT BPR X in Bali that had 1082 lenders (11.99%) who had non-performing loans and were identified as bad loan cases. This made PT BPR X was categorized as a poorly performing bank.  Data mining is used to suggest a decision tree model for credit assessment as it can indicate whether the request of lenders  can  be  classified  as  performing  or  non-performing  loans  risk.  Using  C  5.0  methodology,  a  new  decision  tree  model  is generated. This model suggests that new criteria in analyzing the loan application. The evaluation results show that if this model  is  applied,  PT  BPR  X  can  reduce  non-performing  loans  to  less  than  5%  and  the  bank  can  be  classified  as  a  well performing bank.

Keywords: rural bank data mining non-performing loans decision tree
این برای گرایش های: کلیه گرایش ها، کاربرد دارد. همچنین این در گرایش های: کلیه گرایش ها، می تواند کاربرد داشته باشد. [ برچسب: ]

Skip Navigation Links